

Fill Ups of Sequences and Series

Q.1. The sum of integers from 1 to 100 that are divisible by 2 or 5 is (1984 - 2 Marks)

Ans. 3050

Sol. The sum of integers from 1 to 100 that are divisible by 2 or = sum of integers from 1 to 100 divisible by 2 + sum of integers from 1 to 100 divisible by 5 – sum of integers from 1 to 100 divisible by 10

$$= (2 + 4 + 6 + \dots + 100) + (5 + 10 + 15 + \dots + 100)$$

$$- (10 + 20 + \dots + 100)$$

$$= \frac{50}{2} [2 \times 2 + 49 \times 2] + \frac{20}{2} [2 \times 5 + 19 \times 5]$$

$$= \frac{10}{2} [2 \times 10 + 9 \times 10] =$$

$$= 2550 + 1050 - 550 = 3050$$

Q.2. The solution of the equation $\log_7 \log_5 (\sqrt{x+5} + \sqrt{x})$ is (1986 - 2 Marks)

Ans. 4

Sol. The given equation is

$$\log_7 \log_5 (\sqrt{x+5} + \sqrt{x}) = 0$$

$$\Rightarrow \log_5 (\sqrt{x+5} + \sqrt{x}) = 1$$

Squaring both sides

$$\Rightarrow \sqrt{x+5} + \sqrt{x} = 5 \Rightarrow \sqrt{x+5} = 5 - \sqrt{x} \cdot 10\sqrt{x} + x \Rightarrow 10\sqrt{x} = 20$$

$$\Rightarrow \sqrt{x} = 2 \Rightarrow x = 4$$

Q.3. The sum of the first n terms of the series

$1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \dots$ is

$n(n+1)^2/2$, when n is even. When n is odd, the sum is (1988 - 2 Marks)

Ans. $\frac{n^2(n+1)}{2}$

Sol. When n is odd, let $n = 2m + 1$

\therefore The req. sum

$$\begin{aligned} &= 1^2 + 2.2^2 + 3^2 + 2.4^2 + \dots + 2(2m)^2 + (2m+1)^2 \\ &= \Sigma(2m+1)^2 + 4[1^2 + 2^2 + 3^2 + \dots + m^2] \\ &= \frac{(2m+1)(2m+2)(4m+2+1)}{6} + \frac{4m(m+1)(2m+1)}{6} \\ &\quad \frac{(2m+1)(m+1)}{6} [2(4m+3) + 4m] \\ &= \frac{(2m+1)(2m+2)(6m+3)}{6} = \frac{(2m+1)^2(2m+2)}{2} \\ &= \frac{n^2(n+1)}{2} [\because 2m+1=n] \end{aligned}$$

Q.4. Let the harmonic mean and geometric mean of two positive numbers be the ratio 4 : 5. Then the two numbers are in the ratio (1992 - 2 Marks)

Ans. 4 : 1 or 1 : 4

Sol. Let a and b be two positive numbers.

Then, H.M. $= \frac{2ab}{a+b}$ and G.M. $= \sqrt{ab}$

ATQ HM : GM = 4 : 5

$$\begin{aligned} \therefore \frac{2ab}{(a+b)\sqrt{ab}} &= \frac{4}{5} \\ \Rightarrow \frac{2\sqrt{ab}}{a+b} &= \frac{4}{5} \Rightarrow \frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{5+4}{5-4} \end{aligned}$$

$$\Rightarrow \frac{(\sqrt{a} + \sqrt{b})^2}{(\sqrt{a} - \sqrt{b})^2} = \frac{9}{1} \Rightarrow \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = 3, -3$$

$$\Rightarrow \frac{2\sqrt{a}}{2\sqrt{b}} = \frac{3+1}{3-1}, \frac{-3+1}{-3-1} \Rightarrow \frac{\sqrt{a}}{\sqrt{b}} = 2, \frac{1}{2} \Rightarrow \frac{a}{b} = 4, \frac{1}{4}$$

$$a : b = 4 : 1 \text{ or } 1 : 4$$

Q.5. For any odd integer $n \geq 1$, $n^3 - (n-1)^3 + \dots + (-1)^{n-1} 1^3 = \dots$ (1996 - 1 Mark)

Sol. Since n is an odd integer, $(-1)^{n-1} = 1$ and $n - 1, n - 3, n - 5, \dots$ are even integers.

We have

$$\begin{aligned} & n^3 - (n-1)^3 + (n-2)^3 - (n-3)^3 + \dots + (-1)^{n-1} 1^3 \\ &= n^3 + (n-1)^3 + (n-2)^3 + \dots + 1^3 - 2[(n-1)^3 \\ &\quad + (n-3)^3 + \dots + 2^3] \\ &= [n^3 + (n-1)^3 + (n-2)^3 + \dots + 1^3] \\ &\quad - 2 \times 2^3 \left[\left(\frac{n-1}{2} \right)^3 + \left(\frac{n-3}{2} \right)^3 + \dots + 1^3 \right] \end{aligned}$$

[$\because n - 1, n - 3, \dots$ are even integers] Here the first square bracket contain the sum of cubes of 1st n natural numbers. Whereas the second square bracket contains the sum of the cubes of natural numbers from 1 to

$\left(\frac{n-1}{2} \right)$, where $n - 1, n - 3, \dots$ are even integers. Using the formula for sum of cubes of 1st n natural numbers we get the summation

$$\begin{aligned} &= \left[\frac{n(n+1)}{2} \right]^2 - 16 \left[\left\{ \frac{1}{2} \left(\frac{n-1}{2} \right) \left(\frac{n-1}{2} + 1 \right) \right\} \right]^2 \\ &= \frac{1}{4} n^2 (n+1)^2 - 16 \frac{(n-1)^2 (n+1)^2}{16 \times 4} \\ &= \frac{1}{4} (n+1)^2 [n^2 - (n-1)^2] = \frac{1}{4} (n+1)^2 (2n-1) \end{aligned}$$

Q.6. Let p and q be roots of the equation $x^2 - 2x + A = 0$ and let r and s be the roots of the equation $x^2 - 18x + B = 0$. If $p < q < r < s$ are in arithmetic progression, then $A = \dots$ and $B = \dots$ (1997 - 2 Marks)

Ans. -3, 77

Sol. It is given $p + q = 2$, $pq = A$ and $r + s = 18$, $rs = B$ and it is given that p,q, r, are in A.P.

Therefore, let $p = a - 3d$, $q = a - d$, $r = a + d$ and $s = a + 3d$.

As $p < q < r < s$, we have $d > 0$

Now, $2 = p + q = a - 3d + a - d = 2a - 4d$

$$\Rightarrow a - 2d = 1 \dots(1)$$

Again $18 = r + s = a + d + a + 3d$

$$\Rightarrow 18 = 2a + 4d \Rightarrow 9 = a + 2d. \dots(2)$$

Subtracting (1) from (2) $\Rightarrow 8 = 4d \Rightarrow 2 = d$

Putting in (2) we obtain $a = 5$

$$\therefore p = a - 3d = 5 - 6 = -1,$$

$$q = a - d = 5 - 2 = 3 \quad r = a + d = 5 + 2 = 7,$$

$$s = a + 3d = 5 + 6 = 11$$

Therefore, $A = pq = -3$ and $B = rs = 77$.

Match the following of Sequences and Series

PASSAGE - 1

Let V_r denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is $(2r - 1)$.

Let $T_r = V_{r+1} - V_{r-2}$ and $Q_r = T_{r+1} - T_r$ for $r = 1, 2, \dots$

1. The sum $V_1 + V_2 + \dots + V_n$ is (2007 -4 marks)

(a) $\frac{1}{12}n(n+1)(3n^2 - n + 1)$

(b) $\frac{1}{12}n(n+1)(3n^2 + n + 2)$

(c) $\frac{1}{2}n(2n^2 - n + 1)$

(d) $\frac{1}{3}(2n^3 - 2n + 3)$

Ans. Sol.

$$(b) V_1 + V_2 + \dots + V_n = \sum_{r=1}^n V_r = \sum_{r=1}^n \left(r^3 - \frac{r^2}{2} + \frac{r}{2} \right)$$

$$= \sum n^3 - \frac{\sum n^2}{2} + \frac{\sum n}{2}$$

$$= \frac{n^2(n+1)^2}{4} - \frac{n(n+1)(2n+1)}{12} + \frac{n(n+1)}{4}$$

$$= \frac{n(n+1)}{4} \left[n(n+1) - \frac{2n+1}{3} + 1 \right]$$

$$= \frac{n(n+1)(3n^2 + n + 2)}{12}$$

2. T_r is always (2007 -4 marks)

- (a) an odd number
- (b) an even number
- (c) a prime number
- (d) a composite number

Ans. Sol.

$$(d) T_r = V_{r+1} - V_{r-2}$$

$$\begin{aligned} &= \left[(r+1)^3 - \frac{(r+1)^2}{2} + \frac{r+1}{2} \right] - \left[r^3 - \frac{r^2}{2} + \frac{r}{2} \right] - 2 \\ &= 3r^2 + 2r + 1 \end{aligned}$$

$$T_r = (r+1)(3r-1)$$

For each r , T_r has two different factors other than 1 and itself.

$\therefore T_r$ is always a composite number.

3. Which one of the following is a correct statement ? (2007 -4 marks)

- (a) Q_1, Q_2, Q_3, \dots are in A.P. with common difference 5
- (b) Q_1, Q_2, Q_3, \dots are in A.P. with common difference 6
- (c) Q_1, Q_2, Q_3, \dots are in A.P. with common difference 11
- (d) $Q_1 = Q_2 = Q_3 = \dots$

Ans. Sol.

$$(b) \therefore Q_{r+1} - Q_r = T_{r+2} - T_{r+1} - (T_{r+1} - T_r) = T_{r+2} - 2T_{r+1} + T_r$$

$$= (r+3)(3r+5) - 2(r+2)(3r+2) + (r+1)(3r-1)$$

$$\therefore Q_{r+1} - Q_r = 6(r+1) + 5 - 6r - 5 = 6 \text{ (constant)}$$

$\therefore Q_1, Q_2, Q_3, \dots$ are in AP with common difference 6.

PASSAGE -2

Let A_1, G_1, H_1 denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $n \geq 2$, Let A_{n-1} and H_{n-1} have arithmetic, geometric and harmonic means as A_n, G_n, H_n respectively.

4. Which one of the following statements is correct ? (a) $G_1 > G_2 > G_3 > \dots$ (2007 -4 marks)

(b) $G_1 < G_2 < G_3 < \dots$ (c) $G_1 = G_2 = G_3 = \dots$ (d) $G_1 < G_3 < G_5 < \dots$ and $G_2 > G_4 > G_6 > \dots$

Ans. Sol.

$$(c) \text{ Given } A_1 = \frac{a+b}{2}, G_1 = \sqrt{ab}, H_1 = \frac{2ab}{a+b}$$

$$\text{also } A_n = \frac{A_{n-1} + H_{n-1}}{2}, G_n = \sqrt{A_{n-1} H_{n-1}}$$

$$H_n = \frac{2A_{n-1} H_{n-1}}{A_{n-1} + H_{n-1}}$$

$$\Rightarrow G_n^2 = A_n H_n \Rightarrow A_n H_n = A_{n-1} H_{n-1}$$

Similarly we can prove

$$A_n H_n = A_{n-1} H_{n-1} = A_{n-2} H_{n-2} = \dots = A_1 H_1$$

$$\Rightarrow A_n H_n = ab$$

$$\therefore G_1^2 = G_2^2 = G_3^2 \dots = ab$$

$$\Rightarrow G_1 = G_2 = G_3 \dots = \sqrt{ab}$$

5. Which one of the following statements is correct ? (a) $A_1 > A_2 > A_3 > \dots$ (2007 -4 marks)

(b) $A_1 < A_2 < A_3 < \dots$ (c) $A_1 > A_3 > A_5 > \dots$ and $A_2 < A_4 < A_6 < \dots$ (d) $A_1 < A_3 < A_5 < \dots$ and $A_2 > A_4 > A_6 > \dots$

Ans. Sol.

(a) We have

$$A_n = \frac{A_{n-1} + H_{n-1}}{2}$$

$$\therefore A_n - A_{n-1} = \frac{A_{n-1} + H_{n-1}}{2} - A_{n-1}$$

$$= \frac{H_{n-1} - A_{n-1}}{2} < 0 \quad (\because A_{n-1} > H_{n-1})$$

$\Rightarrow A_n < A_{n-1}$ or $A_{n-1} > A_n$ \therefore We can conclude that $A_1 > A_2 > A_3 > \dots$

6. Which one of the following statements is correct ? (a) $H_1 > H_2 > H_3 > \dots$ (2007 -4 marks)

(b) $H_1 < H_2 < H_3 < \dots$ (c) $H_1 > H_3 > H_5 > \dots$ and $H_2 < H_4 < H_6 < \dots$ (d) $H_1 < H_3 < H_6 < \dots$ and $H_2 > H_4 > H_6 > \dots$

Ans. Sol.

(b) We have $A_n H_n = ab \Rightarrow H_n = \frac{ab}{A_n}$

$$\therefore \frac{1}{A_{n-1}} < \frac{1}{A_n} \Rightarrow H_{n-1} < H_n \quad \therefore H_1 < H_2 < H_3 < \dots$$

Subjective questions of Sequences and Series

Q.1. The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation. $2A + G^2 = 27$

Find the two numbers. (1979)

Ans. 3 and 6 or 6 and 3

Sol. Let the two numbers be a and b, then

$$\frac{2ab}{a+b} = 4 \dots (1); \quad \frac{a+b}{2} = A; \quad \sqrt{ab} = G$$

$$\text{Also } 2A + G^2 = 27 \Rightarrow a + b + ab = 27 \dots (2)$$

Putting $ab = 27 - (a+b)$ in eqn. (1), we get

$$\frac{54 - 2(a+b)}{a+b} = 4 \Rightarrow a + b = 9 \text{ then } ab = 27 - 9 = 18$$

Solving the two we get $a = 6, b = 3$ or $a = 3, b = 6$, which are the required numbers.

Q.2. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° , and the common difference is 5° , Find the number of sides of the polygon. (1980)

Ans. 9

Sol. Let there be n sides in the polygon.

Then by geometry, sum of all n interior angles of polygon $= (n - 2) \times 180^\circ$ Also the angles are in A.P. with the smallest angle $= 120^\circ$, common difference $= 5^\circ$ \therefore Sum of all interior angles of polygon

$$= \frac{n}{2} [2 \times 120 + (n-1) \times 5]$$

Thus we should have

$$\frac{n}{2}[2 \times 120 + (n-1) \times 5] = (n-2) \times 180$$

$$\frac{n}{2}[5n + 235] = (n-2) \times 180$$

$$\Rightarrow 5n^2 + 235n = 360n - 720$$

$$\Rightarrow 5n^2 - 125n + 720 = 0$$

$$\Rightarrow n^2 - 25n + 144 = 0$$

$$\Rightarrow (n-16)(n-9) = 0$$

$$\Rightarrow n = 16, 9$$

Also if $n = 16$ then 16th angle $= 120 + 15 \times 5 = 195^\circ > 180^\circ$

\therefore not possible. Hence $n = 9$.

Q.3. Does there exist a geometric progression containing 27, 8 and 12 as three of its terms ? If it exists, how many such progressions are possible ? (1982 - 3 Marks)

Ans. yes, infinite

Sol. If possible let for a G.P.

$$T_p = 27 = AR^{p-1} \dots (1)$$

$$T_q = 8 = AR^{q-1} \dots (2)$$

$$T_r = 12 = AR^{r-1} \dots (3)$$

From (1) and (2)

$$R^{p-q} = \frac{27}{8} \Rightarrow R^{p-q} = (3/2)^3 \dots (4)$$

From (2) and (3):

$$R^{q-r} = \frac{8}{12} \Rightarrow R^{q-r} = (3/2)^{-1} \dots (5)$$

From (4) and (5):

$$R = 3/2; p - q = 3; q - r = -1; p - 2q + r = 4; p, q, r \in N \dots (6)$$

As there can be infinite natural numbers for p, q and r to satisfy equation (6)

∴ There can be infinite G.P's.

Q.4. Find three numbers a, b, c, between 2 and 18 such that (i) their sum is 25 (ii) the numbers 2, a, b are consecutive terms of an A.P. and (iii) the numbers b, c, 18 are consecutive terms of a G.P. (1983 - 2 Marks)

Ans. a = 5, b = 8, c = 12

Sol. $2 < a, b, c < 18$ $a + b + c = 25 \dots(1)$

2, a, b are in AP $\Rightarrow 2a = b + 2 \Rightarrow 2a - b = 2 \dots(2)$

b, c, 18 are in GP $\Rightarrow c^2 = 18b \dots(3)$

$$\text{From (2)} \Rightarrow a = \frac{b+2}{2}$$

$$\Rightarrow \frac{b+2}{2} + b + c = 25 \Rightarrow 3b = 48 - 2c$$

$$(3) \Rightarrow c^2 = 6(48 - 2c) \Rightarrow c^2 + 12c - 288 = 0$$

$$\Rightarrow c = 12, -24 \text{ (rejected)} \Rightarrow a = 5, b = 8, c = 12$$

Q. 5. If $a > 0, b > 0$ and $c > 0$, prove that

$$(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \geq 9 \quad (1984 - 2 \text{ Marks})$$

Ans. Sol. Given that $a, b, c > 0$

We know for +ve numbers A.M. \geq G.M.

∴ For +ve numbers a, b, c we get

$$\frac{a+b+c}{3} \geq \sqrt[3]{abc} \quad \dots(1)$$

Also for +ve numbers $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$, we get

$$\frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{3} \geq \sqrt[3]{\frac{1}{abc}} \dots\dots(2)$$

Multiplying in eqs (1) and (2) we get

$$\left(\frac{a+b+c}{3}\right) \left(\frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{3}\right) \geq \sqrt[3]{abc} \times \frac{1}{\sqrt[3]{abc}}$$

$$\Rightarrow (a+b+c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq 9 \text{ Proved.}$$

Q.6. If n is a natural number such that

$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \dots \dots p_k^{\alpha_k}$ and p_1, p_2, \dots, p_k are distinct primes, then show that $\ln n \geq k \ln 2$ (1984 - 2 Marks)

Ans. Sol. Given that $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \dots p_k^{\alpha_k} \dots\dots(1)$

Where $n \in \mathbb{N}$ and $p_1, p_2, p_3, \dots, p_k$ are distinct prime numbers.

Taking log on both sides of eq. (1),

we get $\log n = \alpha_1 \log p_1 + \alpha_2 \log p_2 + \dots + \alpha_k \log p_k \dots\dots(2)$

Since every prime number is such that

$p_i \geq 2$

$$\therefore \log_e p_i \geq \log_e 2 \dots\dots(3)$$

$\forall i = 1 \text{ to } k$ Using (2) and (3)

we get $\log n \geq \alpha_1 \log 2 + \alpha_2 \log 2 + \alpha_3 \log 2 + \dots + \alpha_k \log 2$

$$\Rightarrow \log n \geq (\alpha_1 + \alpha_2 + \dots + \alpha_k) \log 2$$

$$\Rightarrow \log n \geq k \log 2 \text{ Proved.}$$

Q.7. Find the sum of the series :

$$\sum_{r=0}^n (-1)^r {}^n C_r \left[\frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \frac{15^r}{2^{4r}} \dots \text{ up to terms} \right]$$

Ans. Sol. The given series is

$$\sum_{r=0}^n (-1)^r {}^n C_r \left[\frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \frac{15^r}{2^{4r}} + \dots \text{ up to } m \text{ terms} \right]$$

$$\sum_{r=0}^n (-1)^r {}^n C_r \left[\left(\frac{1}{2}\right)^r + \left(\frac{3}{4}\right)^r + \left(\frac{7}{8}\right)^r + \left(\frac{15}{16}\right)^r + \dots \text{ to } m \text{ terms} \right]$$

$$\text{Now, } \sum_{r=0}^n (-1)^r {}^n C_r \left(\frac{1}{2}\right)^r = 1 - {}^n C_1 \cdot \frac{1}{2} + {}^n C_2 \cdot \frac{1}{2^2} - {}^n C_3 \cdot \frac{1}{2^3} + \dots$$

$$= \left(1 - \frac{1}{2}\right)^n = \frac{1}{2^n}$$

$$\text{Similarly, } \sum_{r=0}^n (-1)^r {}^n C_r \left(\frac{3}{4}\right)^r = \left(1 - \frac{3}{4}\right)^n = \frac{1}{4^n} \text{ etc.}$$

Hence the given series is,

$$= \frac{1}{2^n} + \frac{1}{4^n} + \frac{1}{8^n} + \frac{1}{16^n} + \dots \text{ to terms}$$

$$= \frac{\frac{1}{2^n} \left(1 - \left(\frac{1}{2^n}\right)^m\right)}{1 - \frac{1}{2^n}} \left[\text{Summing the G.P.} \right]$$

$$= \frac{2^{mn} - 1}{2^{mn} (2^n - 1)}$$

Q.8. Solve for x the following equation : (1987 - 3 Marks)

$$\log_{(2x+3)} (6x^2 + 23x + 21) = 4 - \log_{(3x+7)} (4x^2 + 12x + 9)$$

Ans. -1/4

Sol. The given equation is $\log_{(2x+3)} (6x^2 + 23x + 21)$

$$= 4 - \log_{3x+7} (4x^2 + 12x + 9)$$

$$\Rightarrow \log_{(2x+3)}(6x^2 + 23x + 21) + \log_{(3x+7)}(4x^2 + 12x + 9) = 4$$

$$\Rightarrow \log_{(2x+3)}(2x+3)(3x+7) + \log_{(3x+7)}(2x+3)^2 = 4$$

$$\Rightarrow 1 + \log_{(2x+3)}(3x+7) + 2\log_{(3x+7)}(2x+3) = 4$$

$$\Rightarrow \log_{(2x+3)}(3x+7) + \frac{2}{\log_{(2x+3)}(3x+7)} = 3$$

Let $\log_{(2x+3)}(3x+7) = y \dots (1)$

$$\Rightarrow y + \frac{2}{y} = 3 \Rightarrow y^2 - 3y + 2 = 0$$

$$\Rightarrow (y-1)(y-2) = 0 \Rightarrow y = 1, 2$$

Substituting the values of y in (1), we get

$$\Rightarrow \log_{(2x+3)}(3x+7) = 1 \text{ and } \log_{(2x+3)}(3x+7) = 2$$

$$\Rightarrow 3x+7 = 2x+3 \text{ and } 3x+7 = (2x+3)^2$$

$$\Rightarrow x = -4 \text{ and } 4x^2 + 9x + 2 = 0$$

$$\Rightarrow x = -4 \text{ and } (x+2)(4x+1) = 0$$

$$\Rightarrow x = -4 \text{ and } x = -2, x = -\frac{1}{4}$$

As $\log a$ is defined for $x > 0$ and $a > 0$ ($a \neq 1$), the possible value of x should satisfy all of the following inequalities :

$$\Rightarrow 2x+3 > 0 \text{ and } 3x+7 > 0$$

Also $2x+3 \neq 1$ and $3x+7 \neq 1$

Out of $x = -4, x = -2$ and $x = -\frac{1}{4}$ only $x = -\frac{1}{4}$

satisfies the above inequalities.

So only solution is $x = -\frac{1}{4}$

Q. 9. If $\log_3 2^2$, $\log_3 (2^x, 5)$, and $\log_3 \left(2^x - \frac{7}{2}\right)$ are in arithmetic progression, determine the value of x . (1990 - 4 Marks)

Ans. 3

Sol. Given that $\log_3 2$, $\log_3 (2^x - 5)$, $\log_3 (2^x - 7/2)$ are in A.P.

$$\Rightarrow 2 \log_3 (2^x - 5) = \log_3 2 + \log_3 (2^x - 7/2)$$

$$\Rightarrow (2^x - 5)^2$$

$$\Rightarrow (2^x)^2 - 10 \cdot 2^x + 25 - 2 \cdot 2^x + 7 = 0 \Rightarrow (2^x)^2 - 12 \cdot 2^x + 32 = 0$$

Let $2^x = y$, then we get, $y^2 - 12y + 32 = 0$

$$\Rightarrow (y - 4)(y - 8) = 0$$

$$\Rightarrow y = 4 \text{ or } 8$$

$$\Rightarrow 2x = 22 \text{ or } 23 \Rightarrow x = 2 \text{ or } 3$$

But for $\log_3 (2^x - 5)$ and $\log_3 (2^x - 7/2)$ to be defined

$$2^x - 5 > 0 \text{ and } 2^x - 7/2 > 0 \Rightarrow 2^x > 5 \text{ and } 2^x > 7/2$$

$$\Rightarrow 2^x > 5 \Rightarrow x \neq 2 \text{ and therefore } x = 3.$$

Q.10. Let p be the first of the n arithmetic means between two numbers and q the first of n harmonic means between the same numbers. Show that q does not lie between p and

$$\left(\frac{n+1}{n-1}\right)^2 p. \text{(1991 - 4 Marks)}$$

Ans. Sol. Let a and b be two numbers and $A_1, A_2, A_3, \dots, A_n$ be n A.M's between a and b .

Then $a, A_1, A_2, \dots, A_n, b$ are in A.P.

There are $(n + 2)$ terms in the series, so that

$$a + (n+1)d = b \Rightarrow d = \frac{b-a}{n+1}$$

$$\therefore A_1 = a + \frac{b-a}{n+1} = \frac{an+b}{n+1}$$

$$\therefore p = \frac{an+b}{n+1} \dots (1)$$

The first H.M. between a and b, when nHM's are inserted between a and b can be obtained by replacing a by $1/a$ and b by $1/b$ in eq. (1) and then taking its reciprocal.

$$\text{Therefore, } q = \frac{1}{\left(\frac{1}{a}\right)n + \frac{1}{b}} = \frac{(n+1)ab}{bn+a}$$

$$\therefore q = \frac{(n+1)ab}{a+bn} \dots (2)$$

We have to prove that q cannot lie between p

$$\text{and } \frac{(n+1)^2}{(n-1)^2} p.$$

$$\text{Now, } n+1 > n-1 \Rightarrow \frac{n+1}{n-1} > 1$$

$$\Rightarrow \left(\frac{n+1}{n-1}\right)^2 > 1 \text{ or } p \left(\frac{n+1}{n-1}\right)^2 > p$$

$$\Rightarrow p < p \left(\frac{n+1}{n-1}\right)^2 \dots (3)$$

Now to prove the given, we have to show that q is less than p.

$$\text{For this, let, } \frac{p}{q} = \frac{(na+b)(nb+a)}{(n+1)^2 ab}$$

$$\Rightarrow \frac{p}{q} - 1 = \frac{n(a^2 + b^2) + ab(n^2 + 1) - (n+1)^2 ab}{(n+1)^2 ab}$$

$$\Rightarrow \frac{p}{q} - 1 = \frac{n(a^2 + b^2 - 2ab)}{(n+1)^2 ab}$$

$$\Rightarrow \frac{p}{q} - 1 = \frac{n}{(n+1)^2} \left(\frac{a-b}{\sqrt{ab}} \right)^2 = \frac{n}{(n+1)^2} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} \right)^2$$

$$\Rightarrow \frac{p}{q} - 1 > 0$$

\Rightarrow (provided a and b and hence p and q are +ve) $p > q$ (4)

From 3 and (4), we get, $q < p < \left(\frac{n+1}{n+1} \right)^2 p$

\therefore q can not lie between p and $\left(\frac{n+1}{n+1} \right)^2 p$, if a and b are +ve numbers.

Q.11. If $S_1, S_2, S_3, \dots, S_n$ are the sums of infinite geometric series whose first terms are 1, 2, 3, ..., n and whose common ratios are

$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n+1}$ respectively, then find the values

of $S_1^2 + S_2^2 + S_3^2 + \dots + S_{2n-1}^2$ (1991 - 4 Marks)

Ans. Sol. We have,

$$S_1 = 1 + \frac{1}{2} + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^3 + \dots \infty$$

.....

.....

$$S_2 = 2 + 2 \cdot \frac{1}{3} + 2 \left(\frac{1}{3} \right)^2 + \dots \infty$$

$$S_3 = 3 + 3 \cdot \frac{1}{4} + 3 \left(\frac{1}{4} \right)^2 + \dots \infty$$

$$S_n = n + n \cdot \frac{1}{n+1} + n \left(\frac{1}{n+1} \right)^2 + \dots \infty$$

$$\Rightarrow S_1 = \frac{1}{1 - \frac{1}{2}} = 2 \quad \left[\text{Using } S_\infty = \frac{a}{1-r} \right]$$

$$S_2 = \frac{2}{1 - \frac{1}{3}} = 3, \quad S_3 = \frac{3}{1 - \frac{1}{4}} = 4,$$

$$S_n = \frac{n}{1 - \frac{1}{n+1}} = (n+1)$$

$$\therefore S_1^2 + S_2^2 + S_3^2 + \dots + S_{2n-1}^2 \\ = 2^2 + 3^2 + 4^2 + \dots + (n+1)^2 + \dots + (2n)^2$$

NOTE THIS STEP :

$$\sum_{r=1}^{2n} r^2 - 1 = \frac{2n(2n+1)(4n+1)}{6} - 1^2 \\ = \frac{n(2n+1)(4n+1) - 3}{3}$$

Q.12. The real numbers x_1, x_2, x_3 satisfying the equation $x^3, x^2 + \beta x + \gamma < 0$ are in AP. Find the intervals in which β and γ lie. (1996 - 3 Marks)

Ans. Sol. Since x_1, x_2, x_3 are in A.P.

Therefore, let $x_1 = a - d, x_2 = a$ and $x_3 = a + d$ and x_1, x_2, x_3 are the roots of $x^3 - x_2 + \beta x + \gamma = 0$

We have $\sum \alpha = a - d + a + a + d = 1 \dots (1)$

$$\sum \alpha \beta = (a - d) a + a (a + d) + (a - d) (a + d) = b \dots (2)$$

$$\alpha \beta \gamma = (a - d) a (a + d) = -\gamma \dots (3)$$

From (1), we get, $3a = 1 \Rightarrow a = 1/3$

From (2), we get, $3a^2 - d^2 = \beta$

$$\Rightarrow 3(1/3)^2 - d^2 = \beta \Rightarrow 1/3 - \beta = d^2$$

We know that $d^2 > 0 \forall d \in \mathbb{R}$

$$\frac{1}{3} - \beta \geq 0 \quad \therefore d \geq 0$$

$$\Rightarrow \beta \leq \frac{1}{3} \Rightarrow \beta \in (-\infty, 1/3]$$

From (3), $a(a^2 - d^2) = -\gamma$

$$\Rightarrow \frac{1}{3} \left(\frac{1}{9} - d^2 \right) = -\gamma \Rightarrow \frac{1}{27} - \frac{1}{3} d^2 = -\gamma$$

$$\Rightarrow \gamma + \frac{1}{27} = \frac{1}{3} d^2 \Rightarrow \gamma + \frac{1}{27} \geq 0$$

$$\Rightarrow \gamma \geq -\frac{1}{27} \Rightarrow \gamma \in \left[-\frac{1}{27}, \infty \right)$$

$\beta \in (-\infty, 1/3)$ and $\gamma \in [-1/27, \infty]$

Q.13. Let a, b, c, d be real numbers in G.P. If u, v, w , satisfy the system of equations (1999 - 10 Marks)

$$u + 2v + 3w = 6$$

$$4u + 5v + 6w = 12$$

$$6u + 9v = 4$$

then show that the roots of the equation

$$\left(\frac{1}{u} + \frac{1}{v} + \frac{1}{w} \right) x^2$$

$$+ [(b-c)^2 + (c-a)^2 + (d-b)^2] x + u + v + w = 0$$

and $20x^2 + 10(a-d)^2 x - 9 = 0$ are reciprocals of each other.

Sol. Solving the system of equations, $u + 2v + 3w = 6$,

$$4u + 5v + 6w = 12 \text{ and } 6u + 9v = 4$$

we get $u = -1/3$, $v = 2/3$, $w = 5/3$

$$\therefore u + v + w = 2, \frac{1}{u} + \frac{1}{v} + \frac{1}{w} = -\frac{9}{10}$$

Let r be the common ratio of the G.P., a, b, c, d . Then $b = ar, c = ar^2, d = ar^3$. Then the first equation

$$\left(\frac{1}{u} + \frac{1}{v} + \frac{1}{w}\right)x^2 + [(b-c)^2 + (c-a)^2 + (d-b)^2]x + (u+v+w) = 0 \text{ becomes}$$

$$-\frac{9}{10}x^2 + [(ar - ar^2)^2 + (ar^2 - a)^2 + (ar^3 - ar)^2]x + 2 = 0$$

$$\text{i.e., } 9x^2 - 10a^2(1-r)^2[r^2 + (r+1)^2 + r^2(r+1)^2]x - 20 = 0$$

$$\text{i.e., } 9x^2 - 10a^2(1-r)^2(r^4 + 2r^3 + 3r^2 + 2r + 1)x - 20 = 0$$

$$\text{i.e., } 9x^2 - 10a^2(1-r)^2(1+r+r^2)^2x - 20 = 0,$$

$$\text{i.e., } 9x^2 - 10a^2(1-r^3)^2x - 20 = 0 \quad \dots(1)$$

The second equation is, $20x^2 + 10(a - ar^3)^2x - 9 = 0$

i.e., $20x^2 + 10a^2(1-r^3)^2x - 9 = 0 \dots(2)$

Since (2) can be obtained by the substitution $x \rightarrow 1/x$, equations (1) and (2) have reciprocal roots.

Q.14. The fourth power of the common difference of an arithmetic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer. (2000 - 4 Marks)

Ans.

Sol. Let $a - 3d, a - d, a + d$ and $a + 3d$ be any four consecutive terms of an A.P. with common difference $2d$.

\because Terms of A.P. are integers, $2d$ is also an integer.

$$\text{Hence } P = (2d)^4 + (a - 3d)(a - d)(a + d)(a + 3d)$$

$$= 16d^4 + (a^2 - 9d^2)(a^2 - d^2) = (a^2 - 5d^2)^2$$

$$\text{Now, } a^2 - 5d^2 = a^2 - 9d^2 + 4d^2 = (a - 3d)(a + 3d) + (2d)^2 = \text{some integer}$$

Thus, $P = \text{square of an integer.}$

Q.15. Let a_1, a_2, \dots, a_n be positive real numbers in geometric progression. For each n , let A_n, G_n, H_n be respectively, the arithmetic mean, geometric mean, and harmonic mean of a_1, a_2, \dots, a_n . Find an expression for the geometric mean of G_1, G_2, \dots, G_n in terms of $A_1, A_2, \dots, A_n, H_1, H_2, \dots, H_n$. (2001 - 5 Marks)

Ans.

Sol. Given that a_1, a_2, \dots, a_n are +ve real no's in G.P.

$$\left. \begin{array}{l} a_1 = a \\ a_2 = ar \\ \vdots \\ a_3 = ar^2 \\ \vdots \\ a_n = ar^{n-1} \end{array} \right\} \begin{array}{l} \text{As } a_1, a_2, \dots, a_n \text{ are +ve} \\ \therefore r > 0 \end{array}$$

A_n is A.M. of a_1, a_2, \dots, a_n

$$\therefore A_n = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{a + ar + \dots + ar^{n-1}}{n}$$

$$A_n = \frac{a(1-r^n)}{n(1-r)} \dots (1) \quad (\text{For } r \neq 1)$$

G_n is G.M. of a_1, a_2, \dots, a_n

$$\therefore G_n = \sqrt[n]{a_1 a_2 \dots a_n} = \sqrt[n]{a \cdot ar \cdot ar^2 \dots ar^{n-1}}$$

$$= n \sqrt[n]{a^n \cdot r^{\frac{n(n-1)}{2}}} = ar^{\frac{(n-1)}{2}}$$

$$G_n = ar^{\frac{(n-1)}{2}} \dots (2) \quad (r \neq 1)$$

Q.15. Let a_1, a_2, \dots, a_n be positive real numbers in geometric progression. For each n , let A_n, G_n, H_n be respectively, the arithmetic mean, geometric mean, and harmonic mean of a_1, a_2, \dots, a_n . Find an expression for the geometric mean of G_1, G_2, \dots, G_n in terms of $A_1, A_2, \dots, A_n, H_1, H_2, \dots, H_n$. (2001 - 5 Marks)

Sol. Given that a_1, a_2, \dots, a_n are +ve real no's in G.P.

$$\left. \begin{array}{l} a_1 = a \\ a_2 = ar \\ \vdots \\ a_3 = ar^2 \\ \vdots \\ a_n = ar^{n-1} \end{array} \right\} \begin{array}{l} \text{As } a_1, a_2, \dots, a_n \text{ are +ve} \\ \therefore r > 0 \end{array}$$

A_n is A.M. of a_1, a_2, \dots, a_n

$$\therefore A_n = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{a + ar + \dots + ar^{n-1}}{n}$$

$$A_n = \frac{a(1-r^n)}{n(1-r)} \dots (1) \quad (\text{For } r \neq 1)$$

G_n is G.M. of a_1, a_2, \dots, a_n

$$\therefore G_n = \sqrt[n]{a_1, a_2, \dots, a_n} = \sqrt[n]{a \cdot ar \cdot ar^2 \dots ar^{n-1}}$$

$$= n \sqrt[n]{a^n \cdot r \frac{n(n-1)}{2}} = ar^{\frac{(n-1)}{2}}$$

$$G_n = ar^{\frac{(n-1)}{2}} \dots (2) \quad (r \neq 1)$$

H_n is H.M. of a_1, a_2, \dots, a_n

$$\therefore H_n = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \frac{n}{\frac{1}{a} + \frac{1}{ar} + \dots + \frac{1}{ar^{n-1}}}$$

$$= \frac{n}{\frac{1}{a} \left(\frac{1}{r^n} - 1 \right)} = \frac{n}{\frac{1}{a} \left(\frac{1-r^n}{r^n} \right) \cdot \frac{r}{1-r}}$$

$$H_n = \frac{anr^{n-1}(1-r)}{(1-r^n)} \quad (r \neq 1) \dots (3)$$

We also observe that

$$A_n H_n = \frac{a(1-r^n)}{n(1-r)} \times \frac{anr^{n-1}(1-r)}{(1-r^n)} = a^n r^{n-1} = G_n^2$$

$$\therefore A_n H_n = G_n^2 \dots (4)$$

\therefore Now, G.M. of G_1, G_2, \dots, G_n is

$$G = \sqrt[n]{G_1, G_2, \dots, G_n}$$

$$G = \sqrt[n]{A_1 H_1} \sqrt[n]{A_2 H_2} \dots \sqrt[n]{A_n H_n} \quad [\text{Using equation (4)}]$$

$$G = (A_1 A_2 \dots A_n H_1 H_2 \dots H_n)^{1/2n} \dots (5)$$

If $r = 1$ then $A_n = G_n = H_n = a$

$$\text{Also } A_n H_n = G_n^2$$

\therefore For $r = 1$ also, equation (5) holds.

$$\text{Hence we get, } G = (A_1 A_2 \dots A_n H_1 H_2 \dots H_n)^{1/2n}$$

Q.16. Let a, b be positive real numbers. If a, A_1, A_2, b are in arithmetic progression, a, G_1, G_2, b are in geometric progression and a, H_1, H_2, b are in harmonic progression,

$$\text{show that } \frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2} = \frac{(2a + b)(a + 2b)}{9ab}. \quad (\text{2002 - 5 Marks})$$

Ans.

Sol. Clearly $A_1 + A_2 = a + b$

$$\frac{1}{H_1} + \frac{1}{H_2} = \frac{1}{a} + \frac{1}{b}$$

$$\Rightarrow \frac{H_1 + H_2}{H_1 H_2} = \frac{a + b}{ab} = \frac{A_1 + A_2}{G_1 G_2} \Rightarrow \frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2}$$

$$\text{Also } \frac{1}{H_1} = \frac{1}{a} + \frac{1}{3} \left(\frac{1}{b} - \frac{1}{a} \right) \Rightarrow H_1 = \frac{3ab}{2b + a}$$

$$\frac{1}{H_2} = \frac{1}{a} + \frac{2}{3} \left(\frac{1}{b} - \frac{1}{a} \right) \Rightarrow H_2 = \frac{3ab}{2a + b}$$

$$\Rightarrow \frac{A_1 + A_2}{H_1 + H_2} = \frac{a + b}{3ab \left(\frac{1}{2b + a} + \frac{1}{2a + b} \right)}$$

$$= \frac{(2b + a)(2a + b)}{9ab}$$

Q.17. If a, b, c are in A.P., a^2, b^2, c^2 are in H.P., then prove that either $a = b = c$ or a, b, c form a G.P.. (2003 - 4 Marks)

Ans.

Sol. Given that a, b, c are in A.P.

$$\Rightarrow 2b = a + c \dots\dots(1)$$

and a^2, b^2, c^2 are in H.P.

$$\begin{aligned} \Rightarrow \frac{1}{b^2} - \frac{1}{a^2} &= \frac{1}{c^2} - \frac{1}{b^2} \\ \Rightarrow \frac{(a-b)(a+b)}{b^2 a^2} &= \frac{(b-c)(b+c)}{b^2 c^2} \end{aligned}$$

$$\Rightarrow ac^2 + bc^2 = a^2 b + a^2 c \quad [\because a - b = b - c]$$

$$\Rightarrow ac(c - a) + b(c - a)(c + a) = 0$$

$$\Rightarrow (c - a)(ab + bc + ca) = 0$$

$$\Rightarrow \text{either } c - a = 0 \text{ or } ab + bc + ca = 0$$

$$\Rightarrow \text{either } c = a \text{ or } (a + c)b + ca = 0 \text{ and then from (i)}$$

$$2b^2 + ca = 0$$

$$\text{Either } a = b = c \quad \text{or } b^2 = a\left(\frac{-c}{2}\right)$$

i.e. $a, b, -c/2$ are in G.P. Hence Proved.

Q.18. If $a_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \dots + (-1)^{n-1} \left(\frac{3}{4}\right)^n$ and

$b_n = 1 - a_n$, then find the least natural number n_0 such that

$$b_n > a_n \quad \forall n \geq n_0. \quad (\text{2006 - 6M})$$

Ans.

$$\text{Sol. } a_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \dots + (-1)^{n-1} \left(\frac{3}{4}\right)^n$$

$$= \frac{\frac{3}{4} \left(1 - \left(-\frac{3}{4}\right)^n\right)}{1 + \frac{3}{4}} = \frac{3}{7} \left(1 - \left(-\frac{3}{4}\right)^n\right)$$

$$\begin{aligned} b_n &= 1 - a_n \quad \text{and } b_n > a_n \quad \forall n \geq n_0 \\ \therefore 1 - a_n > a_n \Rightarrow 2a_n &< 1 \end{aligned}$$

$$\Rightarrow \frac{6}{7} \left[1 - \left(-\frac{3}{4}\right)^n\right] < 1 \Rightarrow -\left(-\frac{3}{4}\right)^n < \frac{1}{6}$$

$\Rightarrow (-3)^{n+1} < 2^{2n-1}$ For n to be even, inequality always holds. For n to be odd, it holds for $n \geq 7$.

\therefore The least natural no., for which it holds is 6

(\because it holds for every even natural no.)

Integral Type ques of Sequences and Series

Q.1. Let S_k , $k = 1, 2, \dots, 100$, denote the sum of the infinite geometric series whose first term is

$\frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$. Then the value of

$$\frac{100^2}{100!} + \sum_{k=1}^{100} |(k^2 - 3k + 1)S_k| \text{ is } \quad (\text{2010})$$

Ans. (3)

Sol. Using $S_\infty = \frac{a}{1-r}$, we get

$$S_k = \begin{cases} \frac{k-1}{k!}, & k \neq 1 \\ 1 - \frac{1}{k!}, & k = 1 \\ 0, & k = 1 \\ \frac{1}{(k-1)!}, & k \geq 2 \end{cases}$$

$$\text{Now } \sum_{k=1}^{100} |(k^2 - 3k + 1)S_k| = \sum_{k=2}^{100} |(k^2 - 3k + 1)| \frac{1}{(k-1)!}$$

$$= |-1| + \sum_{k=3}^{100} \frac{(k^2 - 1) + 1 - 3(k-1) - 2}{(k-1)!} \text{ as } k^2 - 3k + 1 > 0 \forall k \geq 3$$

$$= 1 + \sum_{k=3}^{100} \left(\frac{1}{(k-3)!} - \frac{1}{(k-1)!} \right)$$

$$= 1 + \left(1 - \frac{1}{2!} \right) + \left(\frac{1}{1!} - \frac{1}{3!} \right) + \left(\frac{1}{2!} - \frac{1}{4!} \right) + \dots$$

$$\dots + \left(\frac{1}{96!} - \frac{1}{98!} \right) + \left(\frac{1}{97!} - \frac{1}{99!} \right)$$

$$= 3 - \frac{1}{98!} - \frac{1}{99!} = 3 - \frac{9900}{100!} - \frac{100}{100!} = 3 - \frac{10000}{100!} = 3 - \frac{(100)^2}{100!}$$

$$\therefore \frac{100^2}{100!} + 3 \sum_{k=1}^{100} |(k^2 - 3k + 1) S_k| = 3.$$

Q.2. Let $a_1, a_2, a_3, \dots, a_{11}$ be real numbers satisfying

$a_1 = 15$, $27 - 2a_2 > 0$ and $a_k = 2a_{k-1} - a_{k-2}$ for $k = 3, 4, \dots, 11$.

if $\frac{a_1^2 + a_2^2 + \dots + a_{11}^2}{11} = 90$, then the value of

$\frac{a_1 + a_2 + \dots + a_{11}}{11}$ is equal to (2010)

Sol. Given that $a_k = 2a_{k-1} - a_{k-2}$

$$\Rightarrow \frac{a_{k-2} + a_k}{2} = a_{k-1}, 3 \leq k \leq 11$$

$\Rightarrow a_1, a_2, a_3, \dots, a_{11}$ are in AP..

If a is the first term and D the common difference then

$$a^2_1 + a^2_2 + \dots + a^2_{11} = 990 \quad ($$

$$\Rightarrow 11a^2 + d^2 (1^2 + 2^2 + \dots + 10^2) + 2ad (1 + 2 + \dots + 10) = 990$$

$$\Rightarrow 11a^2 + \frac{10 \times 11 \times 21}{6} d^2 + 2ad \times \frac{10 \times 11}{2} = 990$$

$$\Rightarrow a^2 + 35d^2 + 150d = 90 \text{ Using } a = 15,$$

$$\text{we get } 35d^2 + 150d + 135 = 0 \text{ or } 7d^2 + 30d + 27 = 0$$

$$\Rightarrow (d+3)(7d+9) = 0 \Rightarrow d = -3 \text{ or } -9/7$$

$$\text{then } a^2 = 15 - 3 = 12 \text{ or } 15 - \frac{9}{7} = \frac{96}{7} > \frac{27}{2}$$

$$\therefore d \neq -9/7$$

$$\text{Hence } \frac{a_1 + a_2 + \dots + a_{11}}{11} = \frac{\frac{11}{2} [2 \times 15 + 10(-3)]}{11} = 0$$

Q.3. Let $a_1, a_2, a_3, \dots, a_{100}$ be an arithmetic progression with $a_1 = 3$

and $a_1 = 3$ and $S_p = \sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20$, let $m = 5n$.

If $\frac{S_m}{S_n}$ does not depend on n , then a_2 is (2011)

Ans. (9)

Sol. We have $\frac{S_m}{S_n} = \frac{S_{5n}}{S_n} = \frac{\frac{5n}{2}[2 \times 3 + (5n-1)d]}{\frac{n}{2}[6 + (n-1)d]}$

$$= \frac{5[(6-d) + 5nd]}{(6-d) + nd}$$

which will be independent of n if $d = 6$ or $d = 0$. For a proper A.P. we take $d = 6$ then $a_2 = 3 + 6 = 9$

Q.4. A pack contains n cards numbered from 1 to n . Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is 1224. If the smaller of the numbers on the removed cards is k , then $k - 20 =$ (JEE Adv. 2013)

Ans. (5)

Sol. Let $k, k+1$ be removed from pack.

$$\therefore (1 + 2 + 3 + \dots + n) - (k + k + 1) = 1224$$

$$\frac{n(n+1)}{2} - 2k = 1225$$

$$k = \frac{n(n+1) - 2450}{4}$$

for $n = 50$, $k = 25 \therefore k - 20 = 5$

Q.5. Let a, b, c be positive integers such that b/a is an integer. If a, b, c are in geometric progression and the arithmetic mean of a, b, c is $b + 2$, then the value of $\frac{a^2 + a - 14}{a+1}$ is (JEE Adv. 2014)

Ans. (4)

Sol. $\because a, b, c$ are in G.P

$$\therefore b = ar \text{ and } c = ar^2$$

Also $\frac{b}{a}$ is an integer

$\Rightarrow r$ is an integer

\because A.M. of a, b, c is $b + 2$

$$\Rightarrow \frac{a+b+c}{3} = b+2$$

$$\Rightarrow a + ar + ar^2 = 3ar + 6$$

$$\Rightarrow a(r^2 - 2r + 1) = 6$$

$$\Rightarrow a(r - 1)^2 = 6.$$

$\because a$ and r are integers

\therefore The only possible values of a and r can be 6 and 2 respectively.

$$\text{Then } \frac{a^2 + a - 14}{a+1} = \frac{36 + 6 - 14}{6+1} = \frac{28}{7} = 4$$

Q.6. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6 : 11 and the seventh term lies in between 130 and 140, then the common difference of this A.P. is (JEE Adv. 2015)

Sol.

$$\frac{\frac{7}{2}[2a + 6d]}{\frac{11}{2}[2a + 10d]} = \frac{6}{11} \Rightarrow a = 9d$$

$$a_7 = a + 6d = 15d$$

$$\therefore 130 < 15d < 140 \Rightarrow d = 9$$

(\because All terms are natural numbers $\therefore d \in \mathbb{N}$)

Q.7. The coefficient of x^9 in the expansion of $(1 + x)(1 + x^2)(1 + x^3) \dots (1 + x^{100})$ is (JEE Adv. 2015)

Ans. (8)

Sol. In expansion of $(1 + x)(1 + x^2)(1 + x^3) \dots (1 + x^{100})$ x^9 can be found in the following ways $x^9, x^{1+2}, x^{2+7}, x^{3+6}, x^{4+5}, x^{1+2+6}, x^{1+3+5}, x^{2+3+4}$. The coefficient of x^9 in each of the above 8 cases is 1. \therefore Required coefficient = 8.